北京大学 Microsoft PEKING UNIVERSITY Making Large Language Models Better **Reasoners with Step-Aware Verifier** Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen

Jian-Guang Lou, Weizhu Chen

Motivation

Making Large Language Models Better Few-Shot Reasoners with **Diverse Verified Reasoning Steps**

-"All Roads Lead to Rome"

"The truth is not necessarily in

Experiments

Method	GSM8K	AsDiv	MultiArith	SVAMP	SingleEq	CommonsenseQA	StrategyQA	CLUTRR
Previous SOTA (Fine-tuning)	57^a	75.3 ^b	60.5 ^c	57.4^{d}	32.5^{e}	91.2^{f}	73.9 ^g	67.0 ^h
9-12 year olds (Cobbe et al., 2021)	60	-	-	-	-	-	-	-
LaMDA 137B:								
Greedy Decode	17.1	49.0	51.8	38.9	56.6	57.9	65.4	-
Self-Consistency	27.7	58.2	75.7	53.3	-	63.1	67.8	-
PaLM 540B:								
Greedy Decode	56.5	74.0	94.7	79.0	79.5	79.0	75.3	-
Self-Consistency	74.4	81.9	99.3	86.6	-	80.7	81.6	-
GPT-3 davinci (175B):								
Greedy Decode	8.7	31.4	31.4	21.2	38.2	48.2	59.2	33.6
Self-Consistency	18.9	52.8	68.6	44.6	59.6	57.4	65.6	42.5
DIVERSE	30.9 (+12.0)	57.6 (+4.8)	87.6 (+19.0)	46.9 (+2.3)	65.1 (+5.5)	75.0 (+17.6)	66.3 (+0.7)	92.5 (+50.0)
text-davinci-002:								
Greedy Decode	37.1	60.8	70.7	60.0	73.3	65.5	57.8	32.4
Self-Consistency	58.2	76.9	88.4	78.2	87.2	72.9	69.8	34.9
DIVERSE	70.2 (+12.0)	83.5 (+6.6)	96.4 (+8.0)	82.7 (+4.5)	86.5 <mark>(-0.7)</mark>	79.2 (+6.3)	74.8 (+5.0)	93.8 (+58.9)
code-davinci-002:								
Greedy Decode	55.3	75.5	88.8	70.5	87.5	73.4	72.0	32.9
Self-Consistency	76.7	86.2	98.6	85.8	93.7	77.3	77.6	35.6
DIVERSE	82.3 (+5.6)	88.7 (+1.5)	99.8 (+1.2)	87.0 (+1.2)	94.9 (+1.2)	79.9 <mark>(+2.6)</mark>	78.6 (+1.0)	95.9 (+60.3)

the hands of the majority"

"Reasoning is a multistep process".

1.Wisdom of the crowd

• We need induce more diverse reasoning paths from the language model

2. *Reflective thinking*

- Not all reasoning paths are equally good
- We need distinguish good reasoning paths from bad reasoning paths

3. Multistep thinking

- Each reasoning path consists of multiple steps
- We need to look into the steps, rather than deal with all steps of a reasoning path in a whole

Our Method: DIVERSE

- **SoTA** on GSM8K, AsDiv, MultiArith, SVAMP, SingleEq, CLUTRR (June 7, 2022)
- Performance improved on 3 reasoning tasks (arithmetic, commonsense, inductive
- Outperforms PaLM 540B via GPT-3 code-davinci-002 model

Advantages Brought by Diversity

- Diverse prompts increase the diversity of GSM8K reasoning paths and their final answers.
- This diversity gain is also beneficial for the voting verifier since it augments the verifier's positive and negative samples.

Step-aware Voting Verifier

Advantages of Step-Aware Verifier

Diverse

- **Diverse Reasoning Paths:** Diverse prompts + Temperature Decoding
- Voting Verification: Reasoning paths weighted-voting with verifier scores
- **Step Correctness:** Obtain step-level labels to achieve a step-aware verifier

Diverse Prompts & Voting Verification

- First, use random-sampled prompts to generate diverse reasoning paths
- Then, use these reasoning paths to train a scoring verifier
- During inference time, use the verifier scores and do weighted-voting to get the final answer

- Step-aware verifier can further **eliminate redundant reasoning steps**
- The step-aware mechanism helps **produce more correct steps** before making mistakes
- Both verifiers help distinguish calculation errors

Case Study

Question	Self-Consistency	DIVERSE
[GSM8K] Mark decides to buy packs of old magic cards and open them to sell. He buys 3 packs for \$1800 each. He gets 1 card that is worth \$4000 and another card worth \$1000. There are 30 more cards worth an average of \$50 each. How much money profit did he make?	Mark bought 3 packs for \$1800 each for a total of $$1800 * 3 = 5400 (68.1\%)$. He got 1 card worth $$4000$ and another card worth $$1000$ for a total of $$4000 + $1000 = $5000 (72.1\%)$. There were 30 more cards worth an average of \$50 each for a total of $$50 * 30 = 1500 (63.7\%)$. Mark made a profit of $$5000 + $1500 = 6500 (40.5\%)$. The answer is 6500. Answer: 6500 (Wrong) Score: 62.3%	The cheaper cards are worth a total of $30 * 50 = 1500$ (84.4%). So all the cards together are worth $1500 + 4000 + 1000 = 6500$ (83.3%). The cost for the cards was $1800 * 3 = 5400$ (80.1%). So he made a profit of $6500 - 5400 = 1100$ (70.0%). The answer is 1100. Answer: 1100 (Correct) Score: 91.2%

• The step-level score given by the step-aware verifier shows where the

Step-Aware Verifier

SOLUTION-INCORRECT CORRECT [CLS] Question: ... [SEP] Leah had 32 chocolates and her sister had 42. [SEP] They had 32+42=74. [SEP] After eating 35, they had 74+35=109. [SEP] The answer is 109. [SEP] STEP-CORRECT STEP-INCORRECT

- First obtain data with step-level labels (figure on the right)
- Then, train a token-classification model as the step-aware verifier
- During inference time, use the stepaware verifier to score reasoning paths and do weighted-voting to get the final answer

Using sub-paths of correct paths to label correct steps of wrong reasoning paths

sequence goes wrong

Conclusion

DIVERSE advances the reasoning capabilities in three aspects:

- **Diverse reasoning paths --** "wisdom of the crowd"
- **Voting verification --** *"reflective thinking"*
- **Step Correctness --** "multistep thinking"
- DIVERSE can be applied on any LLMs regardless of the model architecture Detailed analysis of the step-aware verifier

Limitations

- Our method need to be applied on LLMs like GPT-3 or PaLM
- As a common problem, the generated paths are not 100 percent faithful
- Human evaluations on steps may be replaced by better automatic metrics